login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205962
McKay-Thompson series of class 30D for the Monster group with a(0) = 2.
4
1, 2, 3, 4, 5, 10, 15, 22, 29, 36, 53, 72, 99, 128, 160, 212, 272, 354, 448, 556, 703, 874, 1096, 1356, 1662, 2050, 2501, 3060, 3716, 4492, 5444, 6550, 7882, 9436, 11262, 13460, 16013, 19034, 22536, 26616, 31450, 37048, 43602, 51164, 59905
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * ((chi(-q^3) * chi(-q^15)) / (chi(-q) * chi(-q^5)))^2 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^3) * eta(q^10) * eta(q^15) / (eta(q) * eta(q^5) * eta(q^6) * eta(q^30)))^2 in powers of q.
Euler transform of period 30 sequence [ 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 - v) * (w^2 - v) - 4*u*v * (v - 1)^2. - Michael Somos, Jun 09 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (30 t)) = f(t) where q = exp(2 Pi i t).
G.f.: (1/x) * (Product_{k>0} (1 + x^k) * (1 + x^(5*k)) / ((1 + x^(3*k)) * (1 + x^(15*k))))^2.
a(n) = A058615(n) unless n=0. Convolution square of A058729.
a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
EXAMPLE
1/q + 2 + 3*q + 4*q^2 + 5*q^3 + 10*q^4 + 15*q^5 + 22*q^6 + 29*q^7 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 + x^k) * (1 + x^(5*k)) / ((1 + x^(3*k)) * (1 + x^(15*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(eta[q^2] *eta[q^3]*eta[q^10]*eta[q^15]/(eta[q]*eta[q^5]*eta[q^6]*eta[q^30]))^2, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 06 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^10 + A) * eta(x^15 + A) / (eta(x + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^30 + A)))^2, n))}
CROSSREFS
Cf. A058729.
Essentially the same as A058615.
Sequence in context: A140730 A273732 A282032 * A134220 A179146 A099161
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 02 2012
STATUS
approved