login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058729
McKay-Thompson series of class 60E for the Monster group.
2
1, 1, 1, 1, 1, 3, 3, 4, 4, 4, 7, 8, 10, 11, 12, 16, 18, 22, 25, 28, 34, 38, 45, 51, 58, 69, 77, 88, 99, 112, 131, 146, 165, 184, 206, 238, 266, 298, 331, 368, 418, 465, 520, 576, 637, 714, 791, 880, 973, 1074, 1194, 1316, 1455, 1604, 1766, 1954, 2145, 2360
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of chi(-x^3) * chi(-x^15) / (chi(-x) * chi(-x^5)) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jun 09 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (120 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 09 2012
Convolution square is A205962. - Michael Somos, Jun 09 2012
a(n) ~ exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
Expansion of q^(1/2)*eta(q^2)*eta(q^3)*eta(q^10)*eta(q^15)/(eta(q)* eta(q^5)*eta(q^6)*eta(q^30)) in powers of q. - G. C. Greubel, Jun 19 2018
EXAMPLE
1 + x + x^2 + x^3 + x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 7*x^10 + ...
T60E = 1/q + q + q^3 + q^5 + q^7 + 3*q^9 + 3*q^11 + 4*q^13 + 4*q^15 + 4*q^17 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(5*k)) / ((1 + x^(3*k)) * (1 + x^(15*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 06 2015 *)
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)* eta[q^2]*eta[q^3]*eta[q^10]*eta[q^15]/(eta[q]* eta[q^5]*eta[q^6] *eta[q^30]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 19 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^10 + A) * eta(x^15 + A) / (eta(x + A) * eta(x^5 + A) * eta(x^6 + A) * eta(x^30 + A)), n))} /* Michael Somos, Jun 09 2012 */
CROSSREFS
Cf. A205962.
Sequence in context: A136546 A278765 A210881 * A021303 A303821 A240622
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved