OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 1. Moreover, for any integer n > 4, we can write 2*n as p + 2^x + 5^y, where p is an odd prime, and x and y are positive integers.
This has been verified for n up to 10^10.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
EXAMPLE
a(2) = 1 since 2*2 = 2 + 2^0 + 5^0 with 2 prime.
a(3) = 1 since 2*3 = 3 + 2^1 + 5^0 with 3 prime.
a(5616) = 2 since 2*5616 = 9059 + 2^11 + 5^3 = 10979 + 2^7 + 5^3 with 9059 and 10979 both prime.
MATHEMATICA
tab={}; Do[r=0; Do[If[PrimeQ[2n-2^k-5^m], r=r+1], {k, 0, Log[2, 2n-1]}, {m, 0, Log[5, 2n-2^k]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
Cf. A000040, A000079, A000351, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303932, A303934, A304034, A304081.
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 01 2018
STATUS
approved