login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118955
Numbers of the form 2^k + prime.
19
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93
OFFSET
1,1
COMMENTS
A109925(a(n)) > 0, complement of A118954;
The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434. - Charles R Greathouse IV, Mar 12 2008
Elsholtz & Schlage-Puchta improve the bound on lower density to 0.107648. Unpublished work by Jie Wu improves this to 0.110114, see Remark 1 in Elsholtz & Schlage-Puchta. - Charles R Greathouse IV, Aug 06 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 87.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000.
Christian Elsholtz and Jan-Christoph Schlage-Puchta, On Romanov's constant, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724.
Laurent Habsieger and Xavier-Francois Roblot, On integers of the form p + 2^k, Acta Arithmetica 122:1 (2006), pp. 45-50.
J. Pintz, A note on Romanov's constant, Acta Mathematica Hungarica 112:1-2 (2006), pp. 1-14.
F. Romani, Computations concerning primes and powers of two, Calcolo 20 (1983), pp. 319-336.
MATHEMATICA
Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#-k], r=True]]; r)& ] (* Jean-François Alcover, Dec 26 2013, after Charles R Greathouse IV *)
PROG
(PARI) is(n)=my(k=1); while(n>k, if(isprime(n-k), return(1), k*=2)); 0 \\ Charles R Greathouse IV, Mar 12 2008
(PARI) list(lim)=my(v=List(), t=1); while(t<lim, forprime(p=2, lim-t, listput(v, p+t)); t<<=1); Set(v) \\ Charles R Greathouse IV, Aug 06 2021
(Haskell)
a118955 n = a118955_list !! (n-1)
a118955_list = filter f [1..] where
f x = any (== 1) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list
-- Reinhard Zumkeller, Jan 03 2014
(Python)
from itertools import count, islice
from sympy import isprime
def A118955_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: any(isprime(n-(1<<i)) for i in range(n.bit_length()-1, -1, -1)), count(max(startvalue, 1)))
A118955_list = list(islice(A118955_gen(), 30)) # Chai Wah Wu, Nov 29 2023
CROSSREFS
Subsequence of A081311; A118957 is a subsequence.
Sequence in context: A029674 A192452 A132147 * A191838 A333214 A363768
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 07 2006
STATUS
approved