login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118955 Numbers of the form 2^k + prime. 19
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A109925(a(n)) > 0, complement of A118954;
The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434. - Charles R Greathouse IV, Mar 12 2008
Elsholtz & Schlage-Puchta improve the bound on lower density to 0.107648. Unpublished work by Jie Wu improves this to 0.110114, see Remark 1 in Elsholtz & Schlage-Puchta. - Charles R Greathouse IV, Aug 06 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000.
Christian Elsholtz and Jan-Christoph Schlage-Puchta, On Romanov's constant, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724.
Laurent Habsieger and Xavier-Francois Roblot, On integers of the form p + 2^k, Acta Arithmetica 122:1 (2006), pp. 45-50.
J. Pintz, A note on Romanov's constant, Acta Mathematica Hungarica 112:1-2 (2006), pp. 1-14.
F. Romani, Computations concerning primes and powers of two, Calcolo 20 (1983), pp. 319-336.
MATHEMATICA
Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#-k], r=True]]; r)& ] (* Jean-François Alcover, Dec 26 2013, after Charles R Greathouse IV *)
PROG
(PARI) is(n)=my(k=1); while(n>k, if(isprime(n-k), return(1), k*=2)); 0 \\ Charles R Greathouse IV, Mar 12 2008
(PARI) list(lim)=my(v=List(), t=1); while(t<lim, forprime(p=2, lim-t, listput(v, p+t)); t<<=1); Set(v) \\ Charles R Greathouse IV, Aug 06 2021
(Haskell)
a118955 n = a118955_list !! (n-1)
a118955_list = filter f [1..] where
f x = any (== 1) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list
-- Reinhard Zumkeller, Jan 03 2014
(Python)
from itertools import count, islice
from sympy import isprime
def A118955_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: any(isprime(n-(1<<i)) for i in range(n.bit_length()-1, -1, -1)), count(max(startvalue, 1)))
A118955_list = list(islice(A118955_gen(), 30)) # Chai Wah Wu, Nov 29 2023
CROSSREFS
Subsequence of A081311; A118957 is a subsequence.
Sequence in context: A029674 A192452 A132147 * A191838 A333214 A363768
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 07 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 19:56 EDT 2024. Contains 371916 sequences. (Running on oeis4.)