OFFSET
1,1
COMMENTS
The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434. - Charles R Greathouse IV, Mar 12 2008
Elsholtz & Schlage-Puchta improve the bound on lower density to 0.107648. Unpublished work by Jie Wu improves this to 0.110114, see Remark 1 in Elsholtz & Schlage-Puchta. - Charles R Greathouse IV, Aug 06 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 87.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000.
Christian Elsholtz and Jan-Christoph Schlage-Puchta, On Romanov's constant, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724.
Laurent Habsieger and Xavier-Francois Roblot, On integers of the form p + 2^k, Acta Arithmetica 122:1 (2006), pp. 45-50.
J. Pintz, A note on Romanov's constant, Acta Mathematica Hungarica 112:1-2 (2006), pp. 1-14.
F. Romani, Computations concerning primes and powers of two, Calcolo 20 (1983), pp. 319-336.
MATHEMATICA
Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#-k], r=True]]; r)& ] (* Jean-François Alcover, Dec 26 2013, after Charles R Greathouse IV *)
PROG
(PARI) is(n)=my(k=1); while(n>k, if(isprime(n-k), return(1), k*=2)); 0 \\ Charles R Greathouse IV, Mar 12 2008
(PARI) list(lim)=my(v=List(), t=1); while(t<lim, forprime(p=2, lim-t, listput(v, p+t)); t<<=1); Set(v) \\ Charles R Greathouse IV, Aug 06 2021
(Haskell)
a118955 n = a118955_list !! (n-1)
a118955_list = filter f [1..] where
f x = any (== 1) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list
-- Reinhard Zumkeller, Jan 03 2014
(Python)
from itertools import count, islice
from sympy import isprime
def A118955_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n: any(isprime(n-(1<<i)) for i in range(n.bit_length()-1, -1, -1)), count(max(startvalue, 1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 07 2006
STATUS
approved