%I
%S 3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,27,29,30,31,
%T 32,33,34,35,37,38,39,41,42,43,44,45,47,48,49,51,53,54,55,57,59,60,61,
%U 62,63,65,66,67,68,69,71,72,73,74,75,77,79,80,81,83,84,85,87,89,90,91,93
%N Numbers of the form 2^k + prime.
%C A109925(a(n)) > 0, complement of A118954;
%C The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434.  _Charles R Greathouse IV_, Mar 12 2008
%H Charles R Greathouse IV, <a href="/A118955/b118955.txt">Table of n, a(n) for n = 1..10000</a>.
%H Laurent Habsieger and XavierFrancois Roblot, <a href="http://journals.impan.gov.pl/aa/Inf/12214.html">On integers of the form p + 2^k</a>, Acta Arithmetica 122:1 (2006), pp. 4550.
%H J. Pintz, <a href="http://dx.doi.org/10.1007/s1047400600606">A note on Romanov's constant</a>, Acta Mathematica Hungarica 112:12 (2006), pp. 114.
%H F. Romani, <a href="http://dx.doi.org/10.1007/BF02576468">Computations concerning primes and powers of two</a>, Calcolo 20 (1983), pp. 319336.
%t Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#k], r=True]]; r)& ] (* _JeanFrançois Alcover_, Dec 26 2013, after _Charles R Greathouse IV_ *)
%o (PARI) is(n)=my(k=1);while(n>k,if(isprime(nk),return(1),k*=2));0 \\ _Charles R Greathouse IV_, Mar 12 2008
%o (Haskell)
%o a118955 n = a118955_list !! (n1)
%o a118955_list = filter f [1..] where
%o f x = any (== 1) $ map (a010051 . (x )) $ takeWhile (< x) a000079_list
%o  _Reinhard Zumkeller_, Jan 03 2014
%Y Subsequence of A081311; A118957 is a subsequence.
%Y Cf. A156695, A010051, A000079.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, May 07 2006
