login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 2^k + prime.
19

%I #42 Nov 27 2024 08:50:17

%S 3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,27,29,30,31,

%T 32,33,34,35,37,38,39,41,42,43,44,45,47,48,49,51,53,54,55,57,59,60,61,

%U 62,63,65,66,67,68,69,71,72,73,74,75,77,79,80,81,83,84,85,87,89,90,91,93

%N Numbers of the form 2^k + prime.

%C A109925(a(n)) > 0, complement of A118954;

%C The lower density is at least 0.09368 (Pintz) and upper density is at most 0.49095 (Habsieger & Roblot). The density, if it exists, is called Romanov's constant. Romani conjectures that it is around 0.434. - _Charles R Greathouse IV_, Mar 12 2008

%C Elsholtz & Schlage-Puchta improve the bound on lower density to 0.107648. Unpublished work by Jie Wu improves this to 0.110114, see Remark 1 in Elsholtz & Schlage-Puchta. - _Charles R Greathouse IV_, Aug 06 2021

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 87.

%H Charles R Greathouse IV, <a href="/A118955/b118955.txt">Table of n, a(n) for n = 1..10000</a>.

%H Christian Elsholtz and Jan-Christoph Schlage-Puchta, <a href="https://www.mathematik.uni-rostock.de/storages/uni-rostock/Alle_MNF/Mathematik/Struktur/Lehrstuehle/Algebra/papers/Rom6k.pdf">On Romanov's constant</a>, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724.

%H Laurent Habsieger and Xavier-Francois Roblot, <a href="https://www.impan.pl/en/publishing-house/journals-and-series/acta-arithmetica/all/122/1/82462/on-integers-of-the-form-p-2-k">On integers of the form p + 2^k</a>, Acta Arithmetica 122:1 (2006), pp. 45-50.

%H J. Pintz, <a href="http://dx.doi.org/10.1007/s10474-006-0060-6">A note on Romanov's constant</a>, Acta Mathematica Hungarica 112:1-2 (2006), pp. 1-14.

%H F. Romani, <a href="http://dx.doi.org/10.1007/BF02576468">Computations concerning primes and powers of two</a>, Calcolo 20 (1983), pp. 319-336.

%t Select[Range[100], (For[r=False; k=1, #>k, k*=2, If[PrimeQ[#-k], r=True]]; r)& ] (* _Jean-François Alcover_, Dec 26 2013, after _Charles R Greathouse IV_ *)

%o (PARI) is(n)=my(k=1);while(n>k,if(isprime(n-k),return(1),k*=2));0 \\ _Charles R Greathouse IV_, Mar 12 2008

%o (PARI) list(lim)=my(v=List(),t=1); while(t<lim, forprime(p=2,lim-t, listput(v,p+t)); t<<=1); Set(v) \\ _Charles R Greathouse IV_, Aug 06 2021

%o (Haskell)

%o a118955 n = a118955_list !! (n-1)

%o a118955_list = filter f [1..] where

%o f x = any (== 1) $ map (a010051 . (x -)) $ takeWhile (< x) a000079_list

%o -- _Reinhard Zumkeller_, Jan 03 2014

%o (Python)

%o from itertools import count, islice

%o from sympy import isprime

%o def A118955_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n: any(isprime(n-(1<<i)) for i in range(n.bit_length()-1,-1,-1)), count(max(startvalue,1)))

%o A118955_list = list(islice(A118955_gen(),30)) # _Chai Wah Wu_, Nov 29 2023

%Y Subsequence of A081311; A118957 is a subsequence.

%Y Cf. A156695, A010051, A000079.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, May 07 2006