login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191838
Ordered sums f+2*g, where f and g are positive Fibonacci numbers (A000045).
5
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 34, 36, 37, 38, 39, 40, 43, 44, 45, 47, 50, 55, 57, 59, 60, 61, 63, 65, 69, 70, 71, 73, 76, 81, 89, 91, 93, 95, 97, 99, 102, 105, 111, 112, 113, 115, 118, 123, 131, 144
OFFSET
1,1
MATHEMATICA
c = 1; d = 2; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191838 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191839: f(i)-2*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191840: 2*f(i)-f(j) *)
v3 = Union[v1, v2] (* A191841 *)
With[{nn=20}, Take[Union[#[[1]]+2#[[2]]&/@Tuples[Fibonacci[ Range[20]], 2]], 4nn]] (* Harvey P. Dale, Jun 08 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 17 2011
STATUS
approved