login
Triangle read by rows: T(n,n) = 1 and for k with 1 <= k < n: T(n+1,k) = T(n,k) + T(n - n mod k, k).
6

%I #2 Mar 30 2012 18:51:00

%S 1,2,1,4,2,1,8,3,2,1,16,6,3,2,1,32,9,4,3,2,1,64,18,8,4,3,2,1,128,27,

%T 12,5,4,3,2,1,256,54,16,10,5,4,3,2,1,512,81,32,15,6,5,4,3,2,1,1024,

%U 162,48,20,12,6,5,4,3,2,1,2048,243,64,25,18,7,6,5,4,3,2,1,4096,486,128,50,24

%N Triangle read by rows: T(n,n) = 1 and for k with 1 <= k < n: T(n+1,k) = T(n,k) + T(n - n mod k, k).

%C Central terms: T(2*n-1,n)=n; T(2*n,n)=n+1; T(2*n,n+1)=n;

%C T(n,k) = n-k+1, for k with n/2 <= k <= n;

%C sums of rows: A140741;

%C T(n,1) = A000079(n-1);

%C T(n,2) = A038754(n-2) for n>1;

%C T(n,3) = A133464(n-3) for n>2;

%C T(n,4) = A140730(n-4) for n>3;

%C T(n,9) = A037124(n-9) for n>8.

%e .................................... 1

%e .................................. 2 . 1

%e .............................. 2^2 . 2 . 1

%e .......................... 2^3 ... 3 . 2 . 1

%e ...................... 2^4 ... 2*3 . 3 . 2 . 1

%e .................. 2^5 ... 3^2 ... 4 . 3 . 2 . 1

%e .............. 2^6 .. 2*3^2 .. 2*4 . 4 . 3 . 2 . 1

%e .......... 2^7 ... 3^3 ... 3*4 ... 5 . 4 . 3 . 2 . 1

%e ...... 2^8 .. 2*3^3 ... 4^2 .. 2*5 . 5 . 4 . 3 . 2 . 1

%e ... 2^9 ... 3^4 .. 2*4^2 . 3*5 ... 6 . 5 . 4 . 3 . 2 . 1

%e 2^10 . 2*3^4 . 3*4^2 .. 4*5 .. 2*6 . 6 . 5 . 4 . 3 . 2 . 1.

%K nonn,tabl

%O 1,2

%A _Reinhard Zumkeller_, May 26 2008