login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275812
Sum of exponents larger than one in the prime factorization of n: A001222(n) - A056169(n).
18
0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 4, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 3
OFFSET
1,4
FORMULA
a(1) = 0, and for n > 1, if A067029(n)=1 [when n is one of the terms of A247180], a(n) = a(A028234(n)), otherwise a(n) = A067029(n)+a(A028234(n)).
a(n) = A001222(n) - A056169(n).
a(n) = A001222(A057521(n)). - Antti Karttunen, Jul 19 2017
From Amiram Eldar, Sep 28 2023: (Start)
Additive with a(p) = 0, and a(p^e) = e for e >= 2.
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 + 1/(p*(p-1))) = A085548 + A136141 = 1.22540408909086062637... . (End)
a(n) = A046660(n) + A056170(n). - Amiram Eldar, Jan 09 2024
MATHEMATICA
Table[Total@ Map[Last, Select[FactorInteger@ n, Last@ # > 1 &] /. {} -> {{0, 0}}], {n, 120}] (* Michael De Vlieger, Aug 11 2016 *)
PROG
(Scheme, two variants, the first one with memoizing definec-macro)
(definec (A275812 n) (if (= 1 n) 0 (+ (if (> (A067029 n) 1) (A067029 n) 0) (A275812 (A028234 n)))))
(define (A275812 n) (- (A001222 n) (A056169 n)))
(Perl) sub a275812 { vecsum( grep {$_> 1} map {$_->[1]} factor_exp(shift) ); } # Dana Jacobsen, Aug 15 2016
(Python)
from sympy import factorint, primefactors
def a001222(n):
return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
def a056169(n):
f=factorint(n)
return 0 if n==1 else sum(1 for i in f if f[i]==1)
def a(n):
return a001222(n) - a056169(n)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 19 2017
(PARI) a(n) = my(f = factor(n)); sum(k=1, #f~, if (f[k, 2] > 1, f[k, 2])); \\ Michel Marcus, Jul 19 2017
CROSSREFS
Differs from A212172 for the first time at n=36, where a(36)=4, while A212172(36)=2.
Sequence in context: A375339 A372603 A212172 * A280683 A171871 A076260
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Aug 11 2016
STATUS
approved