The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292298 Sum of values of vertices of type D at level n of the hyperbolic Pascal pyramid. 1
 0, 0, 0, 0, 24, 324, 3600, 38148, 398112, 4132596, 42818208, 443356212, 4589665248, 47509091508, 491769434400, 5090291998452, 52689326584800, 545383755284532, 5645229662006688, 58433377222329972, 604839778633231200, 6260653947359090868, 64803587809297981728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Colin Barker, Table of n, a(n) for n = 0..987 László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (4th line of Table 2). Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12). FORMULA a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7. G.f.: 12*x^4*(2 - 9*x + 12*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017 MATHEMATICA Join[{0}, LinearRecurrence[{18, -99, 226, -224, 92, -12}, {0, 0, 0, 24, 324, 3600}, 20] ] (* Vincenzo Librandi, Sep 17 2017 *) CoefficientList[Series[12*x^4*(2 - 9*x + 12*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *) PROG (MAGMA) I:=[0, 0, 0, 0, 24, 324, 3600]; [n le 7 select I[n] else 18*Self(n-1)-99*Self(n-2)+226*Self(n-3)-224*Self(n-4)+ 92*Self(n-5)-12*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Sep 17 2017 (PARI) concat(vector(4), Vec(12*x^4*(2 - 9*x + 12*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017 CROSSREFS Cf. A264237. Sequence in context: A006922 A036221 A022652 * A138453 A004317 A295250 Adjacent sequences:  A292295 A292296 A292297 * A292299 A292300 A292301 KEYWORD nonn,easy AUTHOR Eric M. Schmidt, Sep 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 09:26 EST 2022. Contains 350454 sequences. (Running on oeis4.)