OFFSET
2,2
COMMENTS
Partial sums of A001349 starting at n=2.
See Table 1 of Lauritzen et al.
LINKS
Steffen Lauritzen, Alessandro Rinaldo, and Kayvan Sadeghi, Random Networks, Graphical Models, and Exchangeability, arXiv:1701.08420 [math.ST], 2017.
PROG
(Python)
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A292300(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
return sum(sum(mobius(m//d)*c(d) for d in divisors(m, generator=True))//m for m in range(2, n+1)) # Chai Wah Wu, Jul 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Sep 14 2017
STATUS
approved