login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292300
Number of connected graphs with at least 2 and at most n nodes.
3
1, 3, 9, 30, 142, 995, 12112, 273192, 11989763, 1018690328, 165078520804, 50500986390023, 29053988449238084, 31426435131210480044, 64000986548356386656321, 245935832668632382906184889, 1787577661081567721273106761469, 24637809007060949223043923866443113
OFFSET
2,2
COMMENTS
Partial sums of A001349 starting at n=2.
See Table 1 of Lauritzen et al.
LINKS
Steffen Lauritzen, Alessandro Rinaldo, and Kayvan Sadeghi, Random Networks, Graphical Models, and Exchangeability, arXiv:1701.08420 [math.ST], 2017.
PROG
(Python)
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A292300(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
return sum(sum(mobius(m//d)*c(d) for d in divisors(m, generator=True))//m for m in range(2, n+1)) # Chai Wah Wu, Jul 03 2024
CROSSREFS
Cf. A001349.
Sequence in context: A370439 A003604 A357615 * A058148 A031031 A371831
KEYWORD
nonn
AUTHOR
Eric M. Schmidt, Sep 14 2017
STATUS
approved