login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292299 Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid. 1
0, 0, 0, 0, 18, 312, 3798, 41544, 438270, 4566120, 47368110, 490668936, 5080145070, 52588590888, 544355820750, 5634640292424, 58323941179182, 603707608725096, 6248936971173390, 64682313170747016, 669522088312069614, 6930176023749038760, 71733763792342350798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Colin Barker, Table of n, a(n) for n = 0..987

László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 2).

Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).

FORMULA

a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.

G.f.: 6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017

MATHEMATICA

CoefficientList[Series[6*x^4*(3 - 2*x - 6*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)

PROG

(PARI) concat(vector(4), Vec(6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017

CROSSREFS

Cf. A264237.

Sequence in context: A226298 A321511 A208537 * A158532 A214995 A171323

Adjacent sequences:  A292296 A292297 A292298 * A292300 A292301 A292302

KEYWORD

nonn,easy

AUTHOR

Eric M. Schmidt, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:39 EST 2021. Contains 349558 sequences. (Running on oeis4.)