login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292299 Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid. 1
0, 0, 0, 0, 18, 312, 3798, 41544, 438270, 4566120, 47368110, 490668936, 5080145070, 52588590888, 544355820750, 5634640292424, 58323941179182, 603707608725096, 6248936971173390, 64682313170747016, 669522088312069614, 6930176023749038760, 71733763792342350798 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Colin Barker, Table of n, a(n) for n = 0..987

László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 2).

Index entries for linear recurrences with constant coefficients, signature (18,-99,226,-224,92,-12).

FORMULA

a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.

G.f.: 6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - Colin Barker, Sep 17 2017

MATHEMATICA

CoefficientList[Series[6*x^4*(3 - 2*x - 6*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)

PROG

(PARI) concat(vector(4), Vec(6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ Colin Barker, Sep 17 2017

CROSSREFS

Cf. A264237.

Sequence in context: A226298 A321511 A208537 * A158532 A214995 A171323

Adjacent sequences:  A292296 A292297 A292298 * A292300 A292301 A292302

KEYWORD

nonn,easy

AUTHOR

Eric M. Schmidt, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 15:43 EDT 2020. Contains 335448 sequences. (Running on oeis4.)