The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292295 Sum of values of vertices of type A at level n of the hyperbolic Pascal pyramid. 1
 0, 0, 6, 18, 54, 174, 582, 1974, 6726, 22950, 78342, 267462, 913158, 3117702, 10644486, 36342534, 124081158, 423639558, 1446395910, 4938304518, 16860426246, 57565095942, 196539531270, 671027933190, 2291032670214, 7822074814470, 26706233917446, 91180786040838 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 László Németh, Hyperbolic Pascal pyramid, arXiv:1511.0267 [math.CO], 2015 (1st line of Table 2). Index entries for linear recurrences with constant coefficients, signature (5,-6,2). FORMULA a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-3), n >= 4. From Colin Barker, Sep 17 2017: (Start) G.f.: 6*x^2*(1 - 2*x) / ((1 - x)*(1 - 4*x + 2*x^2)). a(n) = (-3/2)*(-4 + (4-3*sqrt(2))*(2+sqrt(2))^n + (2-sqrt(2))^n*(4+3*sqrt(2))) for n>0. (End) MATHEMATICA CoefficientList[Series[6*x^2*(1 - 2*x)/((1 - x)*(1 - 4*x + 2*x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *) PROG (PARI) concat(vector(2), Vec(6*x^2*(1 - 2*x) / ((1 - x)*(1 - 4*x + 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017 CROSSREFS Cf. A264237. Sequence in context: A002933 A016089 A099856 * A183913 A056349 A278768 Adjacent sequences: A292292 A292293 A292294 * A292296 A292297 A292298 KEYWORD nonn,easy AUTHOR Eric M. Schmidt, Sep 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:15 EDT 2024. Contains 373391 sequences. (Running on oeis4.)