|
|
A000421
|
|
Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.
|
|
16
|
|
|
1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019
|
|
REFERENCES
|
A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].
|
|
LINKS
|
Table of n, a(n) for n=1..20.
Jan-Peter Börnsen, Anton E. M. van de Ven, Tangent Developable Orbit Space of an Octupole, arXiv:1807.04817 [hep-th], 2018.
G. Brinkmann, N. Van Cleemput, T. Pisanski, Generation of various classes of trivalent graphs, Theoretical Computer Science 502, 2013, pp.16-29.
R. J. Mathar, Cubic multigraphs A000421
Brendan McKay and others, Nauty Traces
|
|
FORMULA
|
Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020
|
|
EXAMPLE
|
From Natan Arie Consigli, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
|
|
PROG
|
(nauty/bash) for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015
|
|
CROSSREFS
|
Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).
Sequence in context: A027321 A027315 A005965 * A009244 A104985 A210690
Adjacent sequences: A000418 A000419 A000420 * A000422 A000423 A000424
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020
|
|
STATUS
|
approved
|
|
|
|