login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321305
Triangle T(n,f): the number of signed cubic graphs on 2n vertices with f edges of the first sign.
2
1, 0, 0, 0, 0, 1, 1, 2, 3, 2, 1, 1, 2, 3, 8, 16, 21, 21, 16, 8, 3, 2, 5, 14, 57, 152, 313, 474, 551, 474, 313, 152, 57, 14, 5, 19, 91, 491, 1806, 5034, 10604, 17318, 22033, 22033, 17318, 10604, 5034, 1806, 491, 91, 19, 85, 706, 4981, 23791, 84575, 229078, 487020, 825127, 1127783, 1250632, 1127783, 825127, 487020, 229078, 84575, 23791, 4981, 706, 85
OFFSET
0,8
COMMENTS
These are connected, undirected, simple cubic graphs where each edge is signed as either "+" or "-". Row n has 1+3n entries, 0<=f<=3n. The column f=0 (1, 0, 1, 2, 5,...) counts the cubic graphs (A002851). The column f=1 (0, 1, 3, 14, 91, 706,...) counts the edge-rooted cubic graphs.
FORMULA
T(n,f) = T(n,3*n-f).
EXAMPLE
The triangle starts:
0 vertices: 1
2 vertices: 0,0,0,0
4 vertices: 1,1,2,3,2,1,1
6 vertices: 2,3,8,16,21,21,16,8,3,2
8 vertices: 5,14,57,152,313,474,551,474,313,152,57,14,5
10 vertices: 19,91,491,1806,5034,10604,17318,22033,22033,17318,10604,5034,1806,491,91,19
CROSSREFS
Cf. A002851 (first column), A321304 (signed vertices), A302939 (signed trees).
Sequence in context: A105734 A076839 A092542 * A339178 A026552 A333271
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Nov 03 2018
STATUS
approved