|
|
A092542
|
|
Table below read by antidiagonals alternately upwards and downwards.
|
|
7
|
|
|
1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
1 1 1 1 1 ...
2 2 2 2 2 ...
3 3 3 3 3 ...
4 4 4 4 4 ...
...
Let A be sequence A092542 (this sequence) and B be sequence A092543 (1, 2, 1, 1, 2, 3, 4, ...). Under upper trimming or lower trimming, A transforms into B and B transforms into A. Also, B gives the number of times each element of A appears. For example, A(7) = 1 and B(7) = 4 because the 1 in A(7) is the fourth 1 to appear in A. - Kerry Mitchell, Dec 28 2005
First inverse function (numbers of rows) for pairing function A056023 and second inverse function (numbers of columns) for pairing function A056011. - Boris Putievskiy, Dec 24 2012
The rational numbers a(n)/A092543(n) can be systematically ordered and numbered in this way, as Georg Cantor first proved in 1873. - Martin Renner, Jun 05 2016
|
|
REFERENCES
|
Amir D. Aczel, "The Mystery of the Aleph, Mathematics, the Kabbalah and the Search for Infinity", Barnes & Noble, NY 2000, page 112.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = ((-1)^t+1)*j)/2-((-1)^t-1)*i/2, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 24 2012
|
|
MATHEMATICA
|
Table[ Join[Range[2n - 1], Reverse@ Range[2n - 2]], {n, 8}] // Flatten (* Robert G. Wilson v, Sep 28 2006 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|