The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092545 Molien series for complete weight enumerators of self-dual codes over Z/8Z containing the all-ones vector. 4
 1, 3, 44, 361, 2010, 7952, 25401, 68662, 164459, 357241, 718934, 1357271, 2431460, 4164014, 6864051, 10942908, 16946805, 25576479, 37731200, 54532437, 77381198, 107985724, 148434413, 201227282, 269366687, 356392309, 466492202, 604540771 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006. FORMULA G.f.: u1/u2 where u1 := subs(x=x^8, f); f := 1 + 35*x^2 + 237*x^3 + 943*x^4 + 2250*x^5 + 4089*x^6 + 5659*x^7 + 6323*x^8 + 5680*x^9 + 4057*x^10 + 2311*x^11 + 909*x^12 + 246*x^13 + 27*x^14 + x^15; u2 := (1-x^8)^3*(1-x^16 )^3*(1-x^32 )^2. MAPLE f(x):= (1 +35*x^2 +237*x^3 +943*x^4 +2250*x^5 +4089*x^6 +5659*x^7 +6323*x^8 +5680*x^9 +4057*x^10 +2311*x^11 +909*x^12 +246*x^13 + 27*x^14 +x^15)/((1-x)^3*(1-x^2)^3*(1-x^4)^2); seq(coeff(series( f(x), x, n+1), x, n), n = 0..30); # G. C. Greubel, Feb 02 2020 MATHEMATICA CoefficientList[Series[(1 +35*x^2 +237*x^3 +943*x^4 +2250*x^5 +4089*x^6 +5659*x^7 +6323*x^8 +5680*x^9 +4057*x^10 +2311*x^11 +909*x^12 +246*x^13 + 27*x^14 +x^15)/((1-x)^3*(1-x^2)^3*(1-x^4)^2), {x, 0, 30}], x] (* G. C. Greubel, Feb 02 2020 *) CROSSREFS Cf. A092544, A092545, A092546, A092547. Sequence in context: A055539 A046946 A327360 * A011916 A337249 A259785 Adjacent sequences:  A092542 A092543 A092544 * A092546 A092547 A092548 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 10:06 EDT 2020. Contains 337428 sequences. (Running on oeis4.)