login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075556
Smallest prime p not occurring earlier such that p+n is a square, or 0 if no such p exists.
2
3, 2, 13, 5, 11, 19, 29, 17, 7, 71, 53, 37, 23, 67, 181, 0, 47, 31, 557, 61, 43, 59, 41, 97, 0, 199, 73, 197, 167, 139, 113, 89, 163, 191, 109, 0, 107, 83, 157, 401, 103, 79, 101, 317, 151, 179, 149, 241, 0, 239, 349, 173, 271, 307, 269, 233, 619, 383, 137, 229
OFFSET
1,1
COMMENTS
a(n)=0 or 2*sqrt(n)+1 for square n. Apparently the only cases where it is 2*sqrt(n)+1 are n=1, 4 and 9. - Ralf Stephan, Mar 30 2003, corrected by Robert Israel, Dec 07 2024
LINKS
MAPLE
for n from 1 to 100 do
if issqr(n) then
r:= sqrt(n);
if isprime(2*r+1) and not assigned(S[2*r+1]) then R[n]:= 2*r+1; S[2*r+1]:= n else R[n] := 0 fi;
else
for k from ceil(sqrt(n)) do
if not assigned(S[k^2-n]) and isprime(k^2-n) then R[n]:= k^2-n; S[k^2-n]:= n; break fi;
od
fi;
od:
seq(R[i], i=1..100); # Robert Israel, Dec 06 2024
PROG
(PARI) v=vector(1000000); for(n=1, 100, f=0; forprime(p=2, 1000000, if(!v[p]&&issquare(p+n), f=p; break)); if(f, print1(f", "); v[f]=1, print1("0, ")));
CROSSREFS
Sequence in context: A198303 A093922 A075555 * A257568 A087357 A226062
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 23 2002
EXTENSIONS
More terms from Ralf Stephan, Mar 30 2003
STATUS
approved