login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075554
Denominators in the Maclaurin series for arctan(1+x).
3
2, 4, 12, 1, 40, 48, 112, 1, 288, 320, 704, 1, 1664, 1792, 3840, 1, 8704, 9216, 19456, 1, 43008, 45056, 94208, 1, 204800, 212992, 442368, 1, 950272, 983040, 2031616, 1, 4325376, 4456448, 9175040, 1, 19398656, 19922944, 40894464, 1, 85983232
OFFSET
1,1
COMMENTS
Terms with mod(n,4)=0 are zero, so a(n)=1 for those n.
arctan(1 + x) = Pi/4 + integral_{0..x} dt / (2 + 2*t + t^2). - Michael Somos, Apr 20 2014
LINKS
FORMULA
a(n) = Denominator(sum(k=1..n, (sum(i=1..k, (2^(i-n-1)*(-1)^(i+n+(k-1)/2)/i*binomial(k-1,k-i))))*binomial(n-1,n-k))). - Vladimir Kruchinin, Apr 17 2014
Empirical g.f.: -x*(16*x^11 -16*x^10 -16*x^9 -24*x^8 -8*x^7 +4*x^6 +12*x^5 +22*x^4 +x^3 +12*x^2 +4*x +2) / ((x -1)*(x +1)*(x^2 +1)*(2*x^2 -1)^2*(2*x^2 +1)^2). - Colin Barker, Apr 18 2014
MATHEMATICA
Table[Denominator[(-1)^n*2^(-n-1)*((1+I)^n-(1-I)^n)*I/n], {n, 1, 41}] (* Jean-François Alcover, Apr 18 2014, after Vladimir Kruchinin *)
PROG
(Maxima)
atan(n):=(sum((sum((2^(i-n-1)*(-1)^(i+n+(k-1)/2)/i*binomial(k-1, k-i)), i, 1, k))*binomial(n-1, n-k), k, 1, n));
makelist(denom(atan(n), n, 1, 10); /* Vladimir Kruchinin, Apr 17 2014 */
CROSSREFS
Sequence in context: A156519 A215795 A070314 * A365000 A294103 A137369
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 23 2002
STATUS
approved