login
A070314
P(n!+1)-P(2^n+1) where P(x) is the largest prime factor in x.
0
-1, -2, 4, -12, 0, 90, 28, 404, 250, 329850, 39916118, 2834088, 75021616, 3790360374, 46271010, 993974, 956666, 123610842, 1713311273189068, 117876621366, 2703875810364, 93799610095767534, 148139754734068388, 765041185860961083618, 38681321803817920155550
OFFSET
1,2
COMMENTS
Is always true that a(n)>0 for n>5? More generally, if m is an integer >2, is there always an integer f(m) such that P(n!+1)>P(m^n+1) for n>f(m) (it seems that f(2)=5, f(3)=7, f(4)=17, ...)
CROSSREFS
Sequence in context: A218129 A156519 A215795 * A075554 A365000 A294103
KEYWORD
easy,sign
AUTHOR
Benoit Cloitre, May 12 2002
STATUS
approved