login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime p not occurring earlier such that p+n is a square, or 0 if no such p exists.
2

%I #15 Dec 08 2024 17:25:13

%S 3,2,13,5,11,19,29,17,7,71,53,37,23,67,181,0,47,31,557,61,43,59,41,97,

%T 0,199,73,197,167,139,113,89,163,191,109,0,107,83,157,401,103,79,101,

%U 317,151,179,149,241,0,239,349,173,271,307,269,233,619,383,137,229

%N Smallest prime p not occurring earlier such that p+n is a square, or 0 if no such p exists.

%C a(n)=0 or 2*sqrt(n)+1 for square n. Apparently the only cases where it is 2*sqrt(n)+1 are n=1, 4 and 9. - _Ralf Stephan_, Mar 30 2003, corrected by _Robert Israel_, Dec 07 2024

%H Robert Israel, <a href="/A075556/b075556.txt">Table of n, a(n) for n = 1..10000</a>

%p for n from 1 to 100 do

%p if issqr(n) then

%p r:= sqrt(n);

%p if isprime(2*r+1) and not assigned(S[2*r+1]) then R[n]:= 2*r+1; S[2*r+1]:= n else R[n] := 0 fi;

%p else

%p for k from ceil(sqrt(n)) do

%p if not assigned(S[k^2-n]) and isprime(k^2-n) then R[n]:= k^2-n; S[k^2-n]:= n; break fi;

%p od

%p fi;

%p od:

%p seq(R[i],i=1..100); # _Robert Israel_, Dec 06 2024

%o (PARI) v=vector(1000000); for(n=1, 100, f=0; forprime(p=2, 1000000, if(!v[p]&&issquare(p+n), f=p; break)); if(f, print1(f", "); v[f]=1, print1("0, ")));

%Y Cf. A075555, A075557.

%K nonn

%O 1,1

%A _Amarnath Murthy_, Sep 23 2002

%E More terms from _Ralf Stephan_, Mar 30 2003