login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316088
Expansion of 1/(1 + Sum_{k>=1} k^3 * x^k).
4
1, -1, -7, -12, 31, 193, 240, -1105, -5167, -3924, 36343, 133873, 31584, -1131025, -3343639, 1240212, 33732367, 79895089, -90574128, -970716385, -1800454975, 3954181452, 27045519079, 37164094177, -145299908928, -730358292769, -653629025575, 4869632030004
OFFSET
0,3
LINKS
FORMULA
G.f.: (x-1)^4/(x^4-3*x^3+10*x^2-3*x+1).
a(0) = 1; a(n) = -Sum_{k=1..n} k^3 * a(n-k). - Ilya Gutkovskiy, Feb 02 2021
PROG
(PARI) N=99; x='x+O('x^N); Vec((x-1)^4/(x^4-3*x^3+10*x^2-3*x+1))
CROSSREFS
1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), A316087 (m=2), this sequence (m=3).
Sequence in context: A220036 A330589 A197229 * A198306 A218554 A113499
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 24 2018
STATUS
approved