login
Expansion of 1/(1 + Sum_{k>=1} k^3 * x^k).
4

%I #15 Feb 02 2021 16:49:19

%S 1,-1,-7,-12,31,193,240,-1105,-5167,-3924,36343,133873,31584,-1131025,

%T -3343639,1240212,33732367,79895089,-90574128,-970716385,-1800454975,

%U 3954181452,27045519079,37164094177,-145299908928,-730358292769,-653629025575,4869632030004

%N Expansion of 1/(1 + Sum_{k>=1} k^3 * x^k).

%H Seiichi Manyama, <a href="/A316088/b316088.txt">Table of n, a(n) for n = 0..2000</a>

%F G.f.: (x-1)^4/(x^4-3*x^3+10*x^2-3*x+1).

%F a(0) = 1; a(n) = -Sum_{k=1..n} k^3 * a(n-k). - _Ilya Gutkovskiy_, Feb 02 2021

%o (PARI) N=99; x='x+O('x^N); Vec((x-1)^4/(x^4-3*x^3+10*x^2-3*x+1))

%Y 1/(1+ Sum_{k>=1} k^m * x^k): A163810 (m=1), A316087 (m=2), this sequence (m=3).

%K sign

%O 0,3

%A _Seiichi Manyama_, Jun 24 2018