login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-2), starting with 1, 3, 9.
4

%I #24 Sep 08 2022 08:44:49

%S 1,3,9,18,54,108,324,648,1944,3888,11664,23328,69984,139968,419904,

%T 839808,2519424,5038848,15116544,30233088,90699264,181398528,

%U 544195584,1088391168,3265173504,6530347008,19591041024,39182082048

%N a(n) = 6*a(n-2), starting with 1, 3, 9.

%H G. C. Greubel, <a href="/A026565/b026565.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6).

%F a(n) = Sum_{j=0..2*n} A026552(n, j).

%F G.f.: (1+3*x+3*x^2)/(1-6*x^2). - _Ralf Stephan_, Feb 03 2004

%F a(0)=1, a(1)=3; a(n) = 3*a(n-1) if n is even, a(n) = 2*a(n-1) if n is odd. - _Vincenzo Librandi_, Nov 19 2010

%F a(n) = (1/4)*6^(n/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) - (1/2)*[n=0]. - _G. C. Greubel_, Dec 17 2021

%t Table[(1/4)*6^(n/2)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)) - (1/2)*Boole[n==0], {n, 0, 35}] (* _G. C. Greubel_, Dec 17 2021 *)

%o (Magma) [1] cat [n le 2 select 3^n else 6*Self(n-2): n in [1..35]]; // _G. C. Greubel_, Dec 17 2021

%o (Sage)

%o def A026565(n): return ( (3/2)*6^(n/2) if (n%2==0) else 3*6^((n-1)/2) ) - bool(n==0)/2

%o [A026565(n) for n in (0..30)] # _G. C. Greubel_, Dec 17 2021

%Y Cf. A026532, A026534, A026551, A026552, A026567.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_

%E Better name from _Ralf Stephan_, Jul 17 2013