|
|
A026560
|
|
a(n) = T(2*n, n-2), where T is given by A026552.
|
|
18
|
|
|
1, 4, 18, 74, 311, 1296, 5432, 22796, 95958, 404812, 1711600, 7250970, 30772989, 130810512, 556867224, 2373764416, 10130935783, 43285462884, 185129287262, 792525473552, 3395664830670, 14560682746632, 62482560679368, 268307898599664, 1152883194581155, 4956738399534376, 21323028570642414, 91775945084805898
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-2]];
|
|
PROG
|
(Sage)
@CachedFunction
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+2)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-2)
|
|
CROSSREFS
|
Cf. A026552, A026553, A026554, A026555, A026556, A026557, A026558, A026559, A026563, A026566, A026567, A027272, A027273, A027274, A027275, A027276.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|