login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069008
Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = z(n).
6
1, 4, 18, 74, 309, 1280, 5313, 22035, 91410, 379171, 1572857, 6524375, 27063881, 112264055, 465684247, 1931711700, 8012962189, 33238687760, 137877896315, 571933356551, 2372445281505, 9841175633650, 40822327332150, 169335704473650, 702423959724591
OFFSET
0,2
FORMULA
G.f.: -(x+1) / (x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1). - Colin Barker, Jun 14 2013
MAPLE
a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[3, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 14 2013
MATHEMATICA
m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[3]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 18 2013 *)
CROSSREFS
Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
Sequence in context: A266753 A307323 A218059 * A026560 A180140 A245127
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 02 2002
EXTENSIONS
Edited by Henry Bottomley, May 06 2002
STATUS
approved