|
|
A069008
|
|
Let M denote the 6 X 6 matrix with rows /1,1,1,1,1,1/1,1,1,1,1,0/1,1,1,1,0,0/1,1,1,0,0,0/1,1,0,0,0,0/1,0,0,0,0,0/ and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1); then a(n) = z(n).
|
|
6
|
|
|
1, 4, 18, 74, 309, 1280, 5313, 22035, 91410, 379171, 1572857, 6524375, 27063881, 112264055, 465684247, 1931711700, 8012962189, 33238687760, 137877896315, 571933356551, 2372445281505, 9841175633650, 40822327332150, 169335704473650, 702423959724591
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: -(x+1) / (x^6+x^5-5*x^4-4*x^3+6*x^2+3*x-1). - Colin Barker, Jun 14 2013
|
|
MAPLE
|
a:= n->(Matrix(6, (i, j)->`if`(i+j>7, 0, 1))^n.<<[1$6][]>>)[3, 1]:
|
|
MATHEMATICA
|
m = Table[ If[i + j <= 7, 1, 0], {i, 1, 6}, {j, 1, 6}]; mp[n_] := MatrixPower[m, n].m[[1]]; a[n_] := mp[n][[3]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 18 2013 *)
|
|
CROSSREFS
|
Cf. A006359, A069007, A069008, A069009, A070778, A006359 (offset), for x(n), y(n), z(n), t(n), u(n), v(n).
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|