login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069006
Let M denote the 5 X 5 matrix with rows /1,1,1,1,1/1,1,1,1,0/1,1,1,0,0/1,1,0,0,0/1,0,0,0,0/ and A(n) = vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n) = t(n).
6
1, 2, 9, 29, 105, 365, 1287, 4516, 15873, 55759, 195910, 688286, 2418195, 8495917, 29849041, 104869718, 368442700, 1294463368, 4547886208, 15978257251, 56137003923, 197228218022, 692929213991, 2434493909304, 8553197751125
OFFSET
0,2
COMMENTS
a(n-1) (with a(-1) = 0) appears in the formula for 1/rho(11)^n, n >= 0, with rho(11) = 2*cos(Pi/11) (the length ratio (smallest diagonal)/side in the regular 11-gon), when written in the power basis of the degree 5 number field Q(rho(11)): 1/rho(11)^n = A038342(n)*1 + A230080*rho(11) - A230081(n)*rho(11)^2 - a(n-1)*rho(11)^3 + A038342(n-1)* rho(11)^4, n >= 0, with A038342(-1) = 0. See A230080 with the example for n=4. - Wolfdieter Lang, Nov 04 2013
FORMULA
G.f.:(1-x)/(1-x^5+x^4+4*x^3-3*x^2-3*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5), n >= 0, with a(-5)=0, a(-4)=-1, a(-3)=a(-2)=a(-1)=0. - Wolfdieter Lang, Nov 04 2013
MATHEMATICA
LinearRecurrence[{3, 3, -4, -1, 1}, {1, 2, 9, 29, 105}, 30] (* Harvey P. Dale, Apr 16 2015 *)
CROSSREFS
Cf. A006359, A069007, A069008, A069009, A070778, A006359(offset), for x(n), y(n), z(n), t(n), u(n), v(n).
A038342, A230080, A230081 (for powers of 1/rho(11), see a comment above).
Sequence in context: A265440 A152891 A181545 * A351191 A241774 A183383
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 02 2002
EXTENSIONS
Edited by Henry Bottomley, May 06 2002
STATUS
approved