login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266753
Decimal representation of the n-th iteration of the "Rule 163" elementary cellular automaton starting with a single ON (black) cell.
3
1, 4, 18, 74, 298, 1194, 4778, 19114, 76458, 305834, 1223338, 4893354, 19573418, 78293674, 313174698, 1252698794, 5010795178, 20043180714, 80172722858, 320690891434, 1282763565738, 5131054262954, 20524217051818, 82096868207274, 328387472829098
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 20 2019: (Start)
a(n) = 5*a(n-1)-4*a(n-2) for n>2.
G.f.: (1-x+2*x^2) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = (7*4^n - 4)/6 for n>1. - Colin Barker, Nov 25 2016 and Apr 20 2019
a(n) = 4*a(n-1) + 2, n>1, conjectured. - Yosu Yurramendi, Jan 22 2017
a(n) = 2*A020988(n) - A020988(n-1) = A020988(n) + 2^(2n-1) for n > 0, conjectured. - Yosu Yurramendi, Jan 24 2017 [n range correction - Karl V. Keller, Jr., May 07 2022]
a(n) = A072197(n-1) + A002450(n), n > 0, conjectured. - Yosu Yurramendi, Mar 03 2017
MATHEMATICA
rule=163; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A202358 A075675 A047034 * A307323 A218059 A069008
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022
STATUS
approved