|
|
A038609
|
|
Numbers that are the sum of 2 different primes.
|
|
14
|
|
|
5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. J. Mathar, Table of n, a(n) for n = 1..9225
|
|
MAPLE
|
isA038609 := proc(n)
local i, p, q;
for i from 1 do
p := ithprime(i) ;
if 2*p > n then
return false;
fi;
q := n-p ;
if q <= p then
return false ;
end if;
if isprime(q) then
return true;
end if;
end do:
end proc:
n :=1 :
for c from 1 do
if isA038609(c) then
printf("%d %d\n", n, c) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Jun 09 2014
|
|
MATHEMATICA
|
max = 100;
ip = PrimePi[max];
Table[Prime[i] + Prime[j], {i, ip}, {j, i + 1, ip}] // Flatten // Union // Select[#, # <= max&]& (* Jean-François Alcover, Mar 23 2020 *)
|
|
CROSSREFS
|
Cf. A014091, A166081 (complement).
Sequence in context: A043694 A043602 A243624 * A078892 A164374 A072281
Adjacent sequences: A038606 A038607 A038608 * A038610 A038611 A038612
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vasiliy Danilov (danilovv(AT)usa.net) 1998 Jul
|
|
STATUS
|
approved
|
|
|
|