|
|
A078892
|
|
Numbers n such that phi(n) - 1 is prime, where phi is Euler's totient function (A000010).
|
|
8
|
|
|
5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 45, 49, 50, 51, 52, 54, 56, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 109, 111, 112, 117
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For all primes p: p is in the sequence iff p is the greater member of a twin prime pair (A006512), see A078893.
Union of A006512 and A078893. - Ray Chandler, May 26 2008
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Select[Range[200], PrimeQ[EulerPhi[#] - 1]&] (* Vincenzo Librandi, Aug 13 2013 *)
|
|
PROG
|
(PARI) is(n)=isprime(eulerphi(n)-1) \\ Charles R Greathouse IV, Feb 21 2013
(MAGMA) [n: n in [1..200] | IsPrime(EulerPhi(n)-1)]; // Vincenzo Librandi, Aug 13 2013
|
|
CROSSREFS
|
Cf. A000010, A000040, A008864, A109606, A006512, A039698, A072281, A078893.
Sequence in context: A043602 A243624 A038609 * A164374 A072281 A242273
Adjacent sequences: A078889 A078890 A078891 * A078893 A078894 A078895
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Reinhard Zumkeller, Dec 12 2002
|
|
STATUS
|
approved
|
|
|
|