|
|
A269662
|
|
Semiprimes which are the sum of a twin prime pair plus one.
|
|
1
|
|
|
9, 25, 85, 121, 145, 205, 217, 301, 361, 481, 565, 697, 841, 865, 1141, 1285, 1717, 1765, 2041, 2101, 2305, 2461, 2581, 2605, 2641, 2965, 2977, 3241, 3337, 3397, 3865, 3901, 3997, 4285, 4537, 4681, 4765, 5317, 5377, 5461, 5941, 6001, 6241, 6505, 6937, 7081, 7117
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All the terms, except a(1), are congruent to 1 (mod 3).
|
|
LINKS
|
|
|
EXAMPLE
|
a(2) = 25 = 5 * 5 that is semiprime. Also, 25 = 11 + 13 + 1 where {11, 13} is a twin prime pair.
a(3) = 85 = 5 * 17 that is semiprime. Also, 55 = 41 + 43 + 1 where {41, 43} is a twin prime pair.
|
|
MATHEMATICA
|
A269662 = {}; Do[a = Prime[n]; b = a + 2; c = a + b + 1; If[PrimeQ[b] && PrimeOmega[c] == 2, AppendTo[A269662, c]], {n, 1000}]; A269662
Select[Range[1, 7200, 2], And[PrimeOmega@ # == 2, And[PrimeQ@ #, NextPrime[#] - 2] == # &[(# - 1)/2 - 1]] &] (* Michael De Vlieger, Apr 01 2016 *)
Select[1+Total[#]&/@Select[Partition[Prime[Range[500]], 2, 1], #[[2]]-#[[1]] == 2&], PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 10 2016 *)
|
|
PROG
|
(PARI) for(n = 1, 1000, p=prime(n); q=p+2; s=p+q+1; if(isprime(q) && bigomega(s)==2, print1(s, ", ")));
(Magma) IsP2:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ s: n in [1..1000] | IsPrime(n) and IsPrime(n+2) and IsP2(s) where s is (n + n+2 + 1)];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|