OFFSET
0,4
COMMENTS
Partial sums are in A107240.
a(n) is also the number of total dominating sets in the (n-1)-ladder graph. - Eric W. Weisstein, Apr 10 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Index entries for linear recurrences with constant coefficients, signature (2,3,6,-1,0,-1).
FORMULA
a(n) = (A000213(n))^2.
O.g.f.: (1+x)^2*(1-3*x+x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)).
a(n) = 2*a(n-1) + 3*a(n-2) + 6*a(n-3) - a(n-4) - a(n-6).
MATHEMATICA
CoefficientList[Series[(1+x)^2*(1-3*x+x^2-x^3)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]^2/121, {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
LinearRecurrence[{2, 3, 6, -1, 0, -1}, {1, 1, 9, 25, 81, 289}, {0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 40]^2 (* Harvey P. Dale, Aug 01 2021 *)
PROG
(Magma) I:=[1, 1, 1, 9, 25, 81]; [n le 6 select I[n] else 2*Self(n-1) + 3*Self(n-2) + 6*Self(n-3) - Self(n-4) - Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 13 2012
(Sage)
@CachedFunction
def T(n): # A000213
if (n<3): return 1
else: return T(n-1) +T(n-2) +T(n-3)
def A141583(n): return T(n)^2
[A141583(n) for n in (0..40)] # G. C. Greubel, Nov 22 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Aug 19 2008
STATUS
approved