login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263394 a(n) = Product_{i=1..n} (3^i - 2^i). 3
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Generally, for sequences of the form a(n) = Product_{i=1..n} j^i-k^i, where j>k>=1 and  n>=1: given probability p=(k/j)^n that an outcome will occur at the n-th stage of an infinite process, then r = 1 - a(n)/j^((n^2+n)/2) is the probability that the outcome has occurred up to and including the n-th iteration. Here, j=3 and k=2, so p=(2/3)^n and r = 1-a(n)/A047656(n+1). The limiting ratio of r ~ 0.9307279.

LINKS

Table of n, a(n) for n=1..13.

FORMULA

a(n) = Product_{i=1..n} A001047(i).

a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer(2/3) = 0.0692720728018644... . - Vaclav Kotesovec, Oct 10 2016

MAPLE

A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016

MATHEMATICA

Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *)

FoldList[Times, Table[3^i-2^i, {i, 15}]] (* Harvey P. Dale, Feb 06 2017 *)

PROG

(MAGMA) [&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016

(PARI) a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016

CROSSREFS

Cf. A001047, A047656.

Cf. sequences of the form Product_{i=1..n}(j^i - 1): A005329 (j=2), A027871 (j=3), A027637 (j=4), A027872 (j=5), A027873 (j=6), A027875 (j=7),A027876 (j=8), A027877 (j=9), A027878 (j=10), A027879 (j=11), A027880 (j=12).

Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1: A269576 (j=4, k=3), A269661 (j=5, k=4).

Sequence in context: A233077 A182960 A241998 * A336942 A193478 A218463

Adjacent sequences:  A263391 A263392 A263393 * A263395 A263396 A263397

KEYWORD

nonn,easy

AUTHOR

Bob Selcoe, Mar 02 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 09:19 EDT 2022. Contains 356135 sequences. (Running on oeis4.)