login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182163
First column of A182162.
2
1, 2, 12, 192, 8160, 898560, 245145600, 159035627520, 237882053283840, 802369403419852800, 6005354444640501350400, 98553538944200922572390400, 3514155297016560613680059596800, 270315783633381492859539110078054400, 44596108353446508026919663976179916800000
OFFSET
1,2
LINKS
S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12).
MAPLE
A001192 := proc(n) option remember: if(n=0)then return 1: fi: return add((-1)^(n-k-1)*binomial(2^k-k, n-k)*procname(k), k=0..n-1); end: A182163 := proc(n) return add((-1)^(k-1)*k*binomial(n, k)*binomial(2^(n-k)-n+k, k)*k!*(n-k)!*A001192(n-k), k=1..n): end: seq(A182163(n), n=1..16); # Nathaniel Johnston, Apr 18 2012
MATHEMATICA
A001192[n_] := A001192[n] = If[n == 0, 1, Sum[(-1)^(n - k - 1)*Binomial[2^k - k, n - k]*A001192[k], {k, 0, n - 1}]];
a[n_] := Sum[(-1)^(k - 1)*Binomial[n, k]*k*Binomial[2^(n - k) - n + k, k]*k!*(n - k)!*A001192[n - k], {k, 1, n}];
Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Apr 12 2023, after Nathaniel Johnston *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 15 2012
EXTENSIONS
a(8)-a(15) and removal of a(0) from Nathaniel Johnston, Apr 18 2012
STATUS
approved