login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306715
Number of graphical necklaces with n vertices and distinct rotations.
2
1, 0, 2, 12, 204, 5372, 299592, 33546240, 7635496960, 3518433853392, 3275345183542176, 6148914685509544960, 23248573454127484128960, 176848577040728399988915648, 2704321280486889389857342715776, 83076749736557240903566436660674560
OFFSET
1,3
COMMENTS
A simple graph with n vertices has distinct rotations if all n rotations of its vertex set act on the edge set to give distinct graphs. A graphical necklace is a simple graph that is minimal among all n rotations of the vertices.
FORMULA
a(n > 0) = A324461(n)/n.
a(n) = (1/n)*Sum_{d|n} mu(d)*2^(n*(n/d-1)/2 + n*floor(d/2)/d) for n > 0. - Andrew Howroyd, Aug 15 2019
MATHEMATICA
rotgra[g_, m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m, 1, k+1])];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], With[{rots=Table[Nest[rotgra[#, n]&, #, j], {j, n}]}, UnsameQ@@rots&&#==First[Sort[rots]]]&]], {n, 5}]
PROG
(PARI) a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d))/n)} \\ Andrew Howroyd, Aug 15 2019
CROSSREFS
Cf. A000088, A001037, A006125, A059966, A060223, A086675, A192332 (graphical necklaces), A306669, A323861, A323865, A323866, A323871, A324461 (distinct rotations), A324513.
Sequence in context: A317350 A209832 A094157 * A012598 A156489 A129893
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 05 2019
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Aug 15 2019
STATUS
approved