login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306714
Permanent of the circulant matrix whose first row is given by the binary expansion of n.
5
0, 1, 1, 2, 1, 2, 2, 6, 1, 2, 4, 9, 2, 9, 9, 24, 1, 2, 2, 13, 2, 13, 13, 44, 2, 13, 13, 44, 13, 44, 44, 120, 1, 2, 4, 20, 8, 17, 17, 80, 4, 17, 36, 82, 17, 80, 82, 265, 2, 20, 17, 80, 17, 82, 80, 265, 20, 80, 82, 265, 80, 265, 265, 720, 1, 2, 2, 31, 2, 24, 24
OFFSET
0,4
FORMULA
a(n) = 1 <=> n in { A000079 }.
a(n) = floor(log_2(2n))! for n in { A126646 }.
a(A000225(n)) = A000142(n) for n >= 1.
a(A000051(n)) = A040000(n).
a(A007283(n)) = A007395(n+1).
EXAMPLE
The circulant matrix for n = 23 = 10111_2 is
[1 0 1 1 1]
[1 1 0 1 1]
[1 1 1 0 1]
[1 1 1 1 0]
[0 1 1 1 1] and has permanent 44, thus a(23) = 44.
a(10) = 4 != a(12) = 2 although 10 = 1010_2 and 12 = 1100_2 have the same number of 0's and 1's.
MAPLE
a:= n-> (l-> LinearAlgebra[Permanent](Matrix(nops(l),
shape=Circulant[l])))(convert(n, base, 2)):
seq(a(n), n=0..100);
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Mar 05 2019
STATUS
approved