login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200745
Number of partitions of n into distinct non-divisors of n.
21
1, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 6, 1, 9, 5, 6, 5, 20, 4, 28, 7, 19, 24, 55, 6, 51, 45, 49, 27, 136, 16, 180, 50, 117, 143, 146, 28, 403, 242, 260, 68, 668, 91, 852, 246, 260, 649, 1370, 90, 1191, 493, 1110, 634, 2701, 386, 1635, 462, 2160, 2486, 5154, 167
OFFSET
0,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (terms 0..150 from Reinhard Zumkeller)
EXAMPLE
a(10) = #{7+3, 6+4} = 2;
a(11) = #{9+2, 8+3, 7+4, 6+5, 6+3+2, 5+4+2} = 6;
a(12) = #{7+5} = 1;
a(13) = #{11+2, 10+3, 9+4, 8+5, 8+3+2, 7+6, 7+4+2, 6+5+2, 6+4+3} = 9;
a(14) = #{11+3, 10+4, 9+5, 8+6, 6+5+3} = 5;
a(15) = #{13+2, 11+5, 9+6, 9+4+2, 8+7, 8+5+2} = 6.
MAPLE
a:= proc(n) option remember; local b, l;
l:= sort([({$1..n} minus numtheory[divisors](n))[]]);
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(l[i]>n, 0, b(n-l[i], i-1))))
end: forget(b):
b(n, nops(l))
end:
seq(a(n), n=0..80); # Alois P. Heinz, Jan 18 2013
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Module[{b, l}, l = Sort[Range[n] ~Complement~ Divisors[n]]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i < 1, 0, b[m, i - 1] + If[l[[i]] > m, 0, b[m - l[[i]], i - 1]]]]; b[n, Length[l]]];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 06 2017, after Alois P. Heinz *)
PROG
(Haskell)
a200745 n = p [nd | nd <- [1..n], mod n nd /= 0] n where
p _ 0 = 1
p [] _ = 0
p (k:ks) m | m < k = 0 | otherwise = p ks (m - k) + p ks m
CROSSREFS
Sequence in context: A284002 A093659 A306714 * A067541 A054706 A351082
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 22 2011
STATUS
approved