login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324461 Number of simple graphs with n vertices and distinct rotations. 12
1, 1, 0, 6, 48, 1020, 32232, 2097144, 268369920, 68719472640, 35184338533920, 36028797018963936, 73786976226114539520, 302231454903657293676480, 2475880078570197599844819072, 40564819207303340847860140736640, 1329227995784915854457062986570792960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A simple graph with n vertices has distinct rotations if all n rotations of its vertex set act on the edge set to give distinct graphs. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..50

Gus Wiseman, The a(4) = 48 graphs with distinct rotations.

FORMULA

a(n > 0) = A306715(n) * n.

a(n) = Sum_{d|n} mu(d)*2^(n*(n/d-1)/2 + n*floor(d/2)/d) for n > 0. - Andrew Howroyd, Aug 15 2019

MATHEMATICA

rotgra[g_, m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m, 1, k+1])];

Table[Length[Select[Subsets[Subsets[Range[n], {2}]], UnsameQ@@Table[Nest[rotgra[#, n]&, #, j], {j, n}]&]], {n, 0, 5}]

PROG

(PARI) a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d)))} \\ Andrew Howroyd, Aug 15 2019

CROSSREFS

Cf. A000088, A000740, A003436, A006125, A027375, A192314, A192332, A306669, A306715, A323860, A323864, A323867, A324462 (covering case), A324463, A324464.

Sequence in context: A267620 A275334 A192769 * A084259 A028308 A173011

Adjacent sequences:  A324458 A324459 A324460 * A324462 A324463 A324464

KEYWORD

nonn

AUTHOR

Gus Wiseman, Feb 28 2019

EXTENSIONS

Terms a(7) and beyond from Andrew Howroyd, Aug 15 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 10:43 EDT 2021. Contains 346435 sequences. (Running on oeis4.)