OFFSET
1,3
FORMULA
a(n) = 2^binomial(n,2) - 2*2^binomial(n-1,2) if n is even.
a(n) = 2^binomial(n,2) - 2^binomial(n-1,2) if n is odd.
EXAMPLE
a(4)=48 because there are 64 simple labeled graphs on 4 vertices but the graph with no edges, the 3 labelings of the 4-cycle graph, the 4 labelings of the 3 cycle with an isolated node, and the complements of each of these graphs are not counted.
MAPLE
A275334 := proc(n)
if type(n, 'even') then
2^binomial(n, 2)-2*2^binomial(n-1, 2) ;
else
2^binomial(n, 2)-2^binomial(n-1, 2) ;
end if;
end proc:
seq(A275334(n), n=1..30) ; # R. J. Mathar, Jul 15 2017
MATHEMATICA
Table[If[EvenQ[n], 2^Binomial[n, 2] - 2 2^Binomial[n - 1, 2], 2^Binomial[n, 2] - 2^Binomial[n - 1, 2]], {n, 1, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 23 2016
STATUS
approved