login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275336
Decimal expansion of the location of the least capacity point of a unit isosceles right triangle.
2
3, 0, 1, 1, 2, 1, 6, 1, 0, 8, 4, 1, 3, 2, 2, 0, 8, 1, 5, 5, 3, 8, 2, 5, 4, 5, 5, 8, 5, 0, 1, 8, 8, 9, 6, 8, 3, 7, 0, 9, 0, 0, 5, 5, 3, 9, 0, 4, 6, 4, 6, 9, 5, 5, 0, 4, 6, 3, 3, 9, 2, 4, 1, 1, 4, 9, 4, 8, 1, 5, 1, 5, 5, 9, 2, 5, 6, 2, 0, 2, 3, 2, 9, 0, 8, 6, 8, 6, 9, 2, 3, 4, 3, 3, 6, 6, 8, 3, 6, 3
OFFSET
0,1
COMMENTS
Considering the isosceles right triangle x>0, y>0, x+y=1; there exists a unique least [electrostatic] capacity point (0.301..., 0.301...).
It can be observed that this constant is close to but different from the analog for the center of the incircle, which is the inradius 1-1/sqrt(2) = 0.29289...
LINKS
Steven R. Finch, Least Capacity Point of Triangles, arXiv:1407.4105 [math.HO] 2014, p. 6.
FORMULA
2*sqrt(Pi)*re(F(arcsin(sqrt(1 + sqrt(3))), 1/2))/gamma(1/4)^2, where F is the elliptic integral of the first kind.
EXAMPLE
0.30112161084132208155382545585018896837090055390464695504633924...
MATHEMATICA
t0 = 2*Sqrt[Pi]*Re[EllipticF[ArcSin[Sqrt[1 + Sqrt[3]]], 1/2]]/Gamma[1/4]^2;
RealDigits[t0, 10, 100][[1]]
(* second program: *)
digits = 100;
s[z_] := WeierstrassSigma[z, {Gamma[1/4]^8/(256 Pi^2), 0}];
h[x_] := Abs[(s[(2+I) - (1+I)x] s[1-(1-I)x] s[2I*x + (1-I)] s[(2+2I)x] s[1 + (1-I)x] s[(1+I)x-I] s[2x+I-1])/(s[1+I] s[1-(1+I)x] s[(2-I) - (1-I)x] s[2I*x] s[2x] s[(1-I)x + I] s[1+(1+I)x] s[(1+I)(2x-1)])]
t0 = x /. FindMinimum[h[x], {x, 1/3}, WorkingPrecision -> 3 digits][[2]];
RealDigits[t0, 10, digits][[1]]
RealDigits[2 Sqrt[Pi] EllipticF[ArcTan[Sqrt[1 + Sqrt[3]]], 1/2]/Gamma[1/4]^2, 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
CROSSREFS
Sequence in context: A334739 A131802 A069023 * A373949 A091614 A350829
KEYWORD
nonn,cons
AUTHOR
STATUS
approved