login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091614
Matrix inverse of triangle A091613.
3
1, -1, 1, -3, 0, 1, -1, -3, 0, 1, 5, -6, -2, 0, 1, 13, -4, -5, -2, 0, 1, 27, 1, -7, -4, -2, 0, 1, 41, 12, -4, -6, -4, -2, 0, 1, 43, 35, 4, -6, -5, -4, -2, 0, 1, 25, 72, 18, 0, -5, -5, -4, -2, 0, 1, -23, 128, 40, 11, -2, -4, -5, -4, -2, 0, 1, -157, 205, 77, 30, 8, -1, -4, -5, -4, -2, 0, 1
OFFSET
1,4
EXAMPLE
Triangle begins as:
1;
-1, 1;
-3, 0, 1;
-1, -3, 0, 1;
5, -6, -2, 0, 1;
13, -4, -5, -2, 0, 1;
27, 1, -7, -4, -2, 0, 1;
41, 12, -4, -6, -4, -2, 0, 1;
43, 35, 4, -6, -5, -4, -2, 0, 1;
25, 72, 18, 0, -5, -5, -4, -2, 0, 1;
-23, 128, 40, 11, -2, -4, -5, -4, -2, 0, 1;
MATHEMATICA
b[n_, l_, k_]:= b[n, l, k]= If[n==0, 1, Sum[If[i==l, 0, Sum[b[n-i*j, i, k], {j, Min[k, n/i]}]], {i, n}]];
t[n_, k_]:= b[n, 0, k] - b[n, 0, k-1]; (* t = A091613 *)
M:= With[{p = 16}, Table[t[n, k], {n, p}, {k, p}]];
T:= Inverse[M];
Table[T[[n, k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Nov 27 2021 *)
CROSSREFS
Cf. A091613, A091623 (first column).
Sequence in context: A069023 A275336 A373949 * A350829 A249767 A341411
KEYWORD
sign,tabl
AUTHOR
Christian G. Bower, Jan 23 2004
EXTENSIONS
Name corrected by G. C. Greubel, Nov 27 2021
STATUS
approved