OFFSET
1,12
COMMENTS
a(n) is determined by the prime signature of n.
LINKS
FORMULA
It seems that for n >= 3, a(p^n) = A077866(n-3). - Antti Karttunen, Nov 24 2017
EXAMPLE
a(12) = 3. The divisors of 12 are 1,2,3,4,6,12. The divisor subsets (2,3),(2,6) and (3,4) are such that their product is also a divisor of 12. a(24) = 9 and the dedicated divisor subsets are (2,3),(2,4),(2,6),(2,12),(3,4),(3,8),(4,6),(2,3,4),(2,4,6).
PROG
(PARI)
\\ The following program is very inefficient:
A069023(n) = { if(bigomega(n)<2, return(0)); my(pds=(divisors(n)[2..numdiv(n)]), subsets = select(v -> (length(v)>=2), powerset(pds)), pair_products = apply(ss -> podp(ss), subsets), prodsmodn = apply(pps -> vector(#pps, i, n%pps[i]), pair_products)); length(select(s -> 0==vecsum(s), prodsmodn)); };
powerset(v) = { my(siz=2^length(v), pv=vector(siz)); for(i=0, siz-1, pv[i+1] = choosebybits(v, i)); pv; };
choosebybits(v, m) = { my(s=vector(hammingweight(m)), i=j=1); while(m>0, if(m%2, s[j] = v[i]; j++); i++; m >>= 1); s; };
podp(v) = { my(siz=binomial(length(v), 2), rv=vector(siz), k=0); for(i=1, length(v)-1, for(j=i+1, length(v), k++; rv[k] = v[i]*v[j])); rv; }; \\ podp = product of distinct pairs
\\ Antti Karttunen, Nov 24 2017
(Scheme) ;; See in the links-section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 02 2002
EXTENSIONS
Edited by David Wasserman, Mar 26 2003
STATUS
approved