login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334739
Number of unordered factorizations of n with 2 different parts > 1.
2
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 5, 0, 1, 1, 3, 0, 3, 0, 5, 1, 1, 1, 6, 0, 1, 1, 5, 0, 3, 0, 3, 3, 1, 0, 8, 0, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 6, 0, 1, 3, 6, 1, 3, 0, 3, 1, 3, 0, 10, 0, 1, 3, 3, 1, 3, 0, 8, 2, 1, 0, 6, 1, 1, 1, 5, 0, 6, 1, 3, 1, 1, 1, 10, 0, 3, 3, 6
OFFSET
1,12
COMMENTS
a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).
FORMULA
(Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.
EXAMPLE
a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
PROG
(R)
maxe <- function(n, d) { i=0; while( n%%(d^(i+1))==0 ) { i=i+1 }; i }
uhRec <- function(n, l=1) {
uh = 0
if( n<=0 ) {
return(0)
} else if(n==1) {
return(ifelse(l==0, 1, 0))
} else if(l<=0) {
return(0)
} else if( (n>=2) && (l>=1) ) {
for(d in 2:n) {
m = maxe(n, d)
if(m>=1) for(i in 1:m) for(j in 1:min(i, l)) {
uhj = uhRec( n/d^i, l-j )
uh = uh + log(d)/log(n) * (-1)^(j+1) * choose(i, j) * uhj
}
}
return(round(uh, 3))
}
}
n=100; l=2; sapply(1:n, uhRec, l) # A334739
n=100; l=3; sapply(1:n, uhRec, l) # A334740
CROSSREFS
Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778.
Sequence in context: A294289 A059341 A249442 * A131802 A069023 A275336
KEYWORD
nonn
AUTHOR
Jacob Sprittulla, May 09 2020
STATUS
approved