Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 03 2021 21:15:52
%S 0,0,0,0,0,1,0,1,0,1,0,3,0,1,1,2,0,3,0,3,1,1,0,5,0,1,1,3,0,3,0,5,1,1,
%T 1,6,0,1,1,5,0,3,0,3,3,1,0,8,0,3,1,3,0,5,1,5,1,1,0,6,0,1,3,6,1,3,0,3,
%U 1,3,0,10,0,1,3,3,1,3,0,8,2,1,0,6,1,1,1,5,0,6,1,3,1,1,1,10,0,3,3,6
%N Number of unordered factorizations of n with 2 different parts > 1.
%C a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1).
%H Jacob Sprittulla, <a href="/A334739/b334739.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a>
%F (Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ).
%F Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0.
%e a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }.
%o (R)
%o maxe <- function(n,d) { i=0; while( n%%(d^(i+1))==0 ) { i=i+1 }; i }
%o uhRec <- function(n,l=1) {
%o uh = 0
%o if( n<=0 ) {
%o return(0)
%o } else if(n==1) {
%o return(ifelse(l==0,1,0))
%o } else if(l<=0) {
%o return(0)
%o } else if( (n>=2) && (l>=1) ) {
%o for(d in 2:n) {
%o m = maxe(n,d)
%o if(m>=1) for(i in 1:m) for(j in 1:min(i,l)) {
%o uhj = uhRec( n/d^i, l-j )
%o uh = uh + log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj
%o }
%o }
%o return(round(uh,3))
%o }
%o }
%o n=100; l=2; sapply(1:n,uhRec,l) # A334739
%o n=100; l=3; sapply(1:n,uhRec,l) # A334740
%Y Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778.
%K nonn
%O 1,12
%A _Jacob Sprittulla_, May 09 2020