|
|
A122743
|
|
Number of normalized polynomials of degree n in GF(2)[x,y].
|
|
7
|
|
|
1, 6, 56, 960, 31744, 2064384, 266338304, 68451041280, 35115652612096, 35993612646875136, 73750947497819242496, 302157667927362455470080, 2475577847115856892504571904, 40562343327224770087344704323584, 1329187430965708569562959165777772544
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = n-th elementary symmetric function in n+1 variables evaluated at {2,4,8,16,...,2^(n+1)}; see Mathematica program.
a(n) is the number of simple labeled graphs on {1,2,...,n+2} such that the vertex 1 is not isolated. - Geoffrey Critzer, Sep 12 2013
|
|
REFERENCES
|
Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, in: A. López-Ortiz (Ed.), LATIN 2010: Theoretical Informatics, Proceedings of the 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010, in: Lecture Notes in Comput. Sci., vol. 6034, Springer, Berlin, Heidelberg, 2010, pp. 243-254 (Extended Abstract). Final version to appear in SIAM J. Discrete Math.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^((n+1)(n+2)/2) - 2^(n(n+1)/2). - Paul D. Hanna, Apr 08 2009
(2^(n+1)-1)*a(n+1) - 2^(n+1)*(2^(n+2)-1)*a(n) = 0.
a(n+1) - (2^(n+2)+1)*a(n) = 2^(binomial(n+1,2)).
a(n+2) - (5*2^(n+1)+1)*a(n+1) + 2^(n+1)*(2^(n+2)+1)*a(n) = 0. (End)
|
|
EXAMPLE
|
Let esp abbreviate "elementary symmetric polynomial". Then
0th esp of {2} is 1.
1st esp of {2,4} is 2+4 = 6.
2nd esp of {2,4,8} is 2*4 + 2*8 + 4*8 = 56.
|
|
MAPLE
|
seq(2^((n*(1+n))/2)*(2^(1+n)-1), n=0..14); # Peter Luschny, Sep 19 2017
|
|
MATHEMATICA
|
f[k_] := 2^k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A122743 *)
|
|
PROG
|
(PARI) a(n) = 2^((n+1)*(n+2)/2) - 2^(n*(n+1)/2);
(Magma) [2^((n+1)*(n+2) div 2) - 2^(n*(n+1) div 2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
|
|
CROSSREFS
|
Row sums of powers of two triangles A000079.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Comments corrected, reference added, and example edited by Konstantin Ziegler, Dec 04 2012
|
|
STATUS
|
approved
|
|
|
|