login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122743 Number of normalized polynomials of degree n in GF(2)[x,y]. 7
1, 6, 56, 960, 31744, 2064384, 266338304, 68451041280, 35115652612096, 35993612646875136, 73750947497819242496, 302157667927362455470080, 2475577847115856892504571904, 40562343327224770087344704323584, 1329187430965708569562959165777772544
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) = n-th elementary symmetric function in n+1 variables evaluated at {2,4,8,16,...,2^(n+1)}; see Mathematica program.
a(n) is the number of simple labeled graphs on {1,2,...,n+2} such that the vertex 1 is not isolated. - Geoffrey Critzer, Sep 12 2013
a(n) is the HANKEL transform of the large Schröder numbers A006318(n+2). - Emanuele Munarini, Sep 14 2017
REFERENCES
Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, in: A. López-Ortiz (Ed.), LATIN 2010: Theoretical Informatics, Proceedings of the 9th Latin American Symposium, Oaxaca, Mexico, April 19-23, 2010, in: Lecture Notes in Comput. Sci., vol. 6034, Springer, Berlin, Heidelberg, 2010, pp. 243-254 (Extended Abstract). Final version to appear in SIAM J. Discrete Math.
LINKS
Arnaud Bodin, Number of irreducible polynomials in several variables over finite fields, arXiv:0706.0157 [math.AC], 2007; Amer. Math. Monthly, 115 (2008), 653-660.
Joachim von zur Gathen, Alfredo Viola, and Konstantin Ziegler, Counting reducible, powerful, and relatively irreducible multivariate polynomials over finite fields, arXiv:0912.3312 [math.AC], 2009-2013.
FORMULA
a(n) = 2^((n+1)(n+2)/2) - 2^(n(n+1)/2). - Paul D. Hanna, Apr 08 2009
E.g.f.: d(G(2x)-G(x))/dx where G(x) is the e.g.f. for A006125. - Geoffrey Critzer, Sep 12 2013
From Emanuele Munarini, Sep 14 2017: (Start)
(2^(n+1)-1)*a(n+1) - 2^(n+1)*(2^(n+2)-1)*a(n) = 0.
a(n+1) - (2^(n+2)+1)*a(n) = 2^(binomial(n+1,2)).
a(n+2) - (5*2^(n+1)+1)*a(n+1) + 2^(n+1)*(2^(n+2)+1)*a(n) = 0. (End)
EXAMPLE
Let esp abbreviate "elementary symmetric polynomial". Then
0th esp of {2} is 1.
1st esp of {2,4} is 2+4 = 6.
2nd esp of {2,4,8} is 2*4 + 2*8 + 4*8 = 56.
MAPLE
seq(2^((n*(1+n))/2)*(2^(1+n)-1), n=0..14); # Peter Luschny, Sep 19 2017
MATHEMATICA
f[k_] := 2^k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A122743 *)
(* Clark Kimberling, Dec 29 2011 *)
PROG
(PARI) a(n) = 2^((n+1)*(n+2)/2) - 2^(n*(n+1)/2);
vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
(Magma) [2^((n+1)*(n+2) div 2) - 2^(n*(n+1) div 2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
CROSSREFS
Row sums of powers of two triangles A000079.
Equals A000225(n+1)*2^A000217(n).
Sequence in context: A303921 A052317 A185524 * A241031 A268760 A137032
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 13 2008
EXTENSIONS
Edited, terms and links added by Johannes W. Meijer, Oct 10 2010
Comments corrected, reference added, and example edited by Konstantin Ziegler, Dec 04 2012
a(14) from Vincenzo Librandi, Oct 01 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 01:02 EDT 2024. Contains 376002 sequences. (Running on oeis4.)