login
A122744
Numbers of polypentagons with one internal vertex (see Cyvin et al. for precise definition).
0
0, 0, 1, 4, 10, 27, 67, 166, 396, 934, 2168, 4984, 11332, 25584, 57312, 127624, 282560, 622528, 1365200, 2981760, 6487808, 14068128, 30408192, 65535488, 140857664, 301988864, 645920768, 1378525824, 2936008704, 6241120256, 13242807552, 28051496960, 59324219392
OFFSET
3,4
LINKS
S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474
FORMULA
G.f.: x^5+4*x^6 -x^7*(10 -33*x +5*x^2 +54*x^3 +4*x^4 -12*x^5 -136*x^6 +112*x^7) / ( (2*x^2-1) *(2*x^3-1) *(2*x-1)^3 ). - R. J. Mathar, Jul 26 2019
MAPLE
A := proc(n)
a := n-3 ;
if a < 2 then
0;
elif a = 2 then
1 ;
elif a =3 then
4 ;
elif a > 3 then
if type(a, 'odd') then
e := 0 ;
else
e := 1 ;
end if;
if type(a, 'odd') then
epr := 1 ;
else
epr := 0 ;
end if;
if modp(a, 3) = 0 then
d := 1 ;
else
d := 0 ;
end if;
# 3 append
(a-1)*(a-2)*2^(a-5)/3-epr*2^((a-5)/2)-d/3*2^((a-6)/3) ;
# 2 append
%+ ((a-1)*2^(a-2) -e*2^(a/2-1))/2 ;
# 1 append
%+ 2^(a-2) ;
end if;
end proc:
seq(A(n), n=3..40) ; # R. J. Mathar, Jul 26 2019
MATHEMATICA
Join[{0, 0, 1, 4}, LinearRecurrence[{6, -10, -2, 12, 4, 8, -48, 32}, {10, 27, 67, 166, 396, 934, 2168, 4984}, 30]] (* Jean-François Alcover, Apr 07 2020 *)
CROSSREFS
Sequence in context: A105999 A192210 A121494 * A192879 A077923 A183325
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 24 2006
STATUS
approved