login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).
8

%I #11 Aug 10 2018 12:06:39

%S 1,1,2,12,200,4160,99862,2767792,87200166,3076185774,120118928740,

%T 5144915483804,239932734849080,12106729328331780,657428964058944716,

%U 38239094075667233528,2372421500769940561658,156417910715313378830238,10923007991339600108590688,805475337677577620666606928,62550798567594006106067173708

%N G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).

%C G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317355.

%H Paul D. Hanna, <a href="/A317350/b317350.txt">Table of n, a(n) for n = 0..200</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),

%F (2) A(x) = Sum_{n>=0} ( (1+x)^n + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).

%F a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.14581304299... - _Vaclav Kotesovec_, Aug 07 2018

%e G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 200*x^4 + 4160*x^5 + 99862*x^6 + 2767792*x^7 + 87200166*x^8 + 3076185774*x^9 + 120118928740*x^10 + ...

%e such that A = A(x) satisfies

%e A(x) = 1/(2 - A) + ((1+x) - A)/(2 - (1+x)*A)^2 + ((1+x)^2 - A)^2/(2 - (1+x)^2*A)^3 + ((1+x)^3 - A)^3/(2 - (1+x)^3*A)^4 + ((1+x)^4 - A)^4/(2 - (1+x)^4*A)^5 + ((1+x)^5 - A)^5/(2 - (1+x)^5*A)^6 + ...

%e Also,

%e A(x) = 1/(2 + A) + ((1+x) + A)/(2 + (1+x)*A)^2 + ((1+x)^2 + A)^2/(2 + (1+x)^2*A)^3 + ((1+x)^3 + A)^3/(2 + (1+x)^3*A)^4 + ((1+x)^4 + A)^4/(2 + (1+x)^4*A)^5 + ((1+x)^5 + A)^5/(2 + (1+x)^5*A)^6 + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^m - Ser(A) )^m / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A317351, A317355.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Aug 02 2018