login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.
6

%I #27 Jun 13 2021 07:16:35

%S 1,1,2,3,4,5,7,8,10,12,12,1,12,2,19,19,1,22,1,27,28,1,31,1,31,3,38,1,

%T 42,1,46,1,50,1,50,3,57,2,51,7,64,3,71,2,70,5,77,4,85,3,86,5,84,9,104,

%U 2,104,5,108,6,108,8,1,123,5,122,9,119,14,136,9,147,7

%N Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.

%H Alois P. Heinz, <a href="/A317578/b317578.txt">Rows n = 3..5000, flattened</a>

%F Sum_{k>=1} k * T(n,k) = A001399(n-3) = A069905(n) = A211540(n+2).

%F Sum_{k>=2} T(n,k) = A060277(n).

%F min { n >= 0 : T(n,k) > 0 } = A103277(k).

%e T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2].

%e T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]).

%e T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]).

%e T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]).

%e Triangle T(n,k) begins:

%e 1;

%e 1;

%e 2;

%e 3;

%e 4;

%e 5;

%e 7;

%e 8;

%e 10;

%e 12;

%e 12, 1;

%e 12, 2;

%e 19;

%e 19, 1;

%e 22, 1;

%p b:= proc(n) option remember; local m, c, i, j, h, w;

%p m, c:= proc() 0 end, 0; forget(m);

%p for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do

%p h:= i*j*(n-j-i);

%p w:= m(h); w:= w+1; m(h):= w;

%p c:= c+x^w-x^(w-1)

%p od od; c

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):

%p seq(T(n), n=3..100);

%t b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c];

%t T[n_] := CoefficientList[b[n], x] // Rest;

%t T /@ Range[3, 100] // Flatten (* _Jean-François Alcover_, Jun 13 2021, after _Alois P. Heinz_ *)

%Y Cf. A001399, A060277, A069905, A103277, A211540.

%Y Row sums give A306403.

%Y Column k=1 gives A306435.

%K nonn,look,tabf

%O 3,3

%A _Alois P. Heinz_, Jul 31 2018