login
A060279
Number of labeled rooted trees with all 2n nodes of odd degree.
2
2, 16, 576, 47104, 6860800, 1562148864, 512260833280, 228646878969856, 133296779352342528, 98349146136012390400, 89583293999931442855936, 98732413018143104723582976, 129497500112719525122855141376, 199333356644821012200519079297024
OFFSET
1,1
COMMENTS
There are no such trees with an odd number of nodes.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
FORMULA
a(n) = (n/2^n)*Sum_{k=0..n} binomial(n, k)*(n-2*k)^(n-2).
a(n) = 2*n * A007106(n).
a(n) ~ sqrt(1+s^2) * s^(2*n-1) * 2^(2*n) * n^(2*n-1) / exp(2*n), where s = 1.5088795615383199289... is the root of the equation sqrt(1+s^2) = s*log(s+sqrt(1+s^2)). - Vaclav Kotesovec, Jan 23 2014
MAPLE
a:= j-> (n-> (n/2^n)*add(binomial(n, k)*(n-2*k)^(n-2), k=0..n))(2*j):
seq(a(n), n=1..15); # Alois P. Heinz, Sep 27 2020
MATHEMATICA
Flatten[{2, Table[n/2^n*Sum[Binomial[n, k]*(n-2*k)^(n-2), {k, 0, n}], {n, 4, 30, 2}]}] (* Vaclav Kotesovec, Jan 23 2014 *)
A060279[n_]:= n*Sum[Binomial[2*n, k]*(n-k)^(2*n-2), {k, 0, n-1}] +Boole[n==1];
Table[A060279[n], {n, 40}] (* G. C. Greubel, Nov 05 2024 *)
PROG
(PARI) a(n) = n/2^n*sum(k=0, n, binomial(n, k)*(n-2*k)^(n-2)) \\ Michel Marcus, Jun 17 2013
(Magma)
A060279:= func< n | n eq 1 select 2 else n*(&+[Binomial(2*n, k)*(n-k)^(2*n-2) : k in [0..n-1]]) >;
[A060279(n): n in [1..30]]; // G. C. Greubel, Nov 05 2024
(SageMath)
def A060279(n): return n*sum( binomial(2*n, k)*(n-k)^(2*n-2) for k in range(n)) + int(n==1)
[A060279(n) for n in range(1, 41)] # G. C. Greubel, Nov 05 2024
CROSSREFS
Cf. A007106.
Sequence in context: A012726 A013177 A375209 * A369674 A012757 A012464
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 28 2001
STATUS
approved