login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324485
a(n) = A324484(n)/n.
4
1, 0, 5, 6, 24, 40, 120, 250, 640, 1452, 3600, 8510, 20880, 50460, 124024, 303750, 750120, 1853120, 4600200, 11437548, 28527320, 71281800, 178526880, 447893250, 1125750120, 2833844040, 7144449920, 18036271740, 45591631800, 115381449692, 292329067800, 741410192250
OFFSET
1,3
LINKS
M. Baake, J. Hermisson, and P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See Table 4.
FORMULA
From Seiichi Manyama, Apr 29 2021: (Start)
a(n) = (1/n) * Sum_{d|n} mu(n/d) * A001350(d)^2 = (1/n) * Sum_{d|n} mu(n/d) * A152152(d).
G.f.: Sum_{k>=1} mu(k) * log(f(x^k))/k , where f(x) = ((1-x-x^2) * (1+x-x^2))^2/((1-3*x+x^2) * (1-x)^2 * (1+x)^4). (End)
PROG
(PARI) a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;
a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^2)/n; \\ Seiichi Manyama, Apr 29 2021
(PARI) f(x) = ((1-x-x^2)*(1+x-x^2))^2/((1-3*x+x^2)*(1-x)^2*(1+x)^4);
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*log(f(x^k))/k)) \\ Seiichi Manyama, Apr 29 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 12 2019
EXTENSIONS
More terms from Seiichi Manyama, Apr 29 2021
STATUS
approved