login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335827
Number of permutations of {1,2,...,n} having equal numbers of 1-cycles and 2-cycles.
1
1, 0, 0, 5, 6, 24, 325, 1770, 13020, 130004, 1276956, 13855500, 167506735, 2177721480, 30454243716, 456940935269, 7311585023400, 124290741884160, 2237240377496620, 42507759488340744, 850154135238709416, 17853233727681764600, 392771198006845906920
OFFSET
0,4
LINKS
H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 147.
FORMULA
E.g.f.: A(x)*B(x) where A(x) is the e.g.f. for A038205 and B(x) = Sum_{k>=0} x^(3*k)/(2^k*k!^2).
a(n)/n! ~ exp(-3/2) Sum_{k>=0} 1/(2^k*k!^2) = 0.34944033... .
EXAMPLE
a(6)=325 because good permutations have cycle sizes 6, 3+3, 3+2+1, 2+2+1+1 and there are respectively 120 + 40 + 120 + 45 = 325 permutations.
MAPLE
a:= proc(n, t) option remember; `if`(n<5, [1, 0$2, 5, 6][n+1],
(2*(n-1)^2*a(n-1)+(n-1)*(n-2)*((4*n+3)*a(n-3)
-7*(n-3)*a(n-4)+2*(n-3)*(n-4)*a(n-5)))/(2*n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 25 2020
MATHEMATICA
nn = 20; f[x_] := Sum[x^(3 k)/(2^k k!^2), {k, 0, \[Infinity]}];
Range[0, nn]! CoefficientList[Series[f[x] Exp[-x - x^2/2]/(1 - x), {x, 0, nn}], x]
CROSSREFS
Cf. A038205.
Sequence in context: A042283 A047186 A324485 * A166591 A342610 A160529
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jun 25 2020
STATUS
approved